Role of apoptosis in HESA-A teratogenicity in mouse fetus

Moallem, S.A.ab, Ahmadi, A.c, Niapour, M.b, Hosseini, T.b, Habibi, G.d

a Pharmacy Faculty, Mashhad University of Medical Sciences, Mashhad, Iran
b Drud Sciences Research Center, Buali Institute, Mashhad, Iran
c Institute of Cancer Research, Medical Sciences/University of Tehran, P.O. Box 14168-1748, Tehran, 1441684971, Iran
d Farzan Clinical Research, Tehran, Iran

Abstract

HESA-A is a natural compound of herbal-marine origin with cytotoxic and antitumor effects. The anticancer effects of HESA-A have been the subject of both in vivo and in vitro studies. This study was to investigate the mechanism of HESA-A teratogenicity. We assessed the HESA-A-induced apoptosis in mouse fetus in vitro by using the vital staining and TUNNEL methods. HESA-A, in lower doses, had no significant effect on apoptosis but, in higher doses of 1 and 2 μL, increased cell death. A dose of 10 μL induced the cell death with both apoptosis and necrosis mechanisms. HESA-A changed the cell-death pattern; in moderate doses of the drug, the apoptosis-to-necrosis ratio was more than 1, and in higher doses, this ratio was less than 1. © 2014 Informa UK Ltd.

Reaxys Database Information

Author keywords

Apoptosis; HESA-A; Teratogenicity; TUNNEL; Vital staining

Indexed Keywords

EMTREE drug terms: hesa a; natural product; unclassified drug; antineoplastic agent; dyes, reagents, indicators, markers and buffers; heavy metal; HESA A preparation; HESA A preparation; neutral red; plant medicinal product; teratogenic agent

EMTREE medical terms: animal cell; antineoplastic activity; apoptosis; article; controlled study; drug cytotoxicity; embryo; female; fetus; herb; in vitro study; in vivo study; male; mouse; nonhuman; tarsal tunnel syndrome; teratogenicity; vital stain; animal; animal embryo; Bagg albino mouse; chemically induced disorder; chemistry; dose response; drug effect; embryo culture; necrosis; nick end labeling; pathology; physiology; pregnancy

MeSH: Animals; Anticarcinogenic Agents; Apoptosis; Dose-Response Relationship, Drug; Embryo Culture Techniques; Embryo, Mammalian; Female; In Situ Nick-End Labeling; Indicators and Reagents; Male; Metals, Heavy; Mice; Mice, Inbred BALB C; Necrosis; Neutral Red; Plant Preparations; Pregnancy; Teratogens

Medline is the source for the MeSH terms of this document.

Chemicals and CAS Registry Numbers: neutral red, 137-47-7; Anticarcinogenic Agents; HESA A preparation; Indicators and Reagents; Metals, Heavy; Neutral Red, 137-47-7; Plant Preparations; Teratogens

ISSN: 0148-5440 **CODEN:** DCTODS **Source Type:** Journal **Original language:** English
DOI: 10.1080/01485440.2014.924276 **PubMed ID:** 25034145 **Document Type:** Article